Modular Forms and Special Cycles on Shimura Curves. (Am-161)
Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface M attached to a Shimura curve M over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of M. The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as t…
Mehr
CHF 115.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
Weitere Autoren: Rapoport, Michael / Yang, Tonghai
- ISBN: 978-0-691-12551-0
- EAN: 9780691125510
- Produktnummer: 2198884
- Verlag: Princeton University Press
- Sprache: Englisch
- Erscheinungsjahr: 2006
- Seitenangabe: 388 S.
- Masse: H23.4 cm x B15.6 cm x D2.0 cm 588 g
- Abbildungen: Paperback
- Gewicht: 588
Über den Autor
Stephen S. Kudla is at the University of Maryland. Michael Rapoport is at the Mathematisches Institut der Universität, Bonn, Germany. Tonghai Yang is at the University of Wisconsin, Madison.
4 weitere Werke von Stephen S. Kudla:
Bewertungen
Anmelden