Log-Linear Models, Extensions, and Applications
Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. T…
Mehr
CHF 90.30
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
Weitere Autoren: Choromanska, Anna (Hrsg.) / Deng, Li (Hrsg.) / Heigold, Georg (Hrsg.) / Jebara, Tony (Hrsg.)
- ISBN: 978-0-262-35161-4
- EAN: 9780262351614
- Produktnummer: 34355159
- Verlag: MIT Press
- Sprache: Englisch
- Erscheinungsjahr: 2018
- Seitenangabe: 214 S.
- Plattform: EPUB
- Masse: 18'992 KB
- Abbildungen: 51 COLOR ILLUS.
Über den Autor
Aleksandr Aravkin is Assistant Professor of Applied Mathematics at the University of Washington.Anna Choromanska is Assistant Professor at New York University's Tandon School of Engineering.Li Deng is Chief Artificial Intelligence Officer of Citadel.Georg Heigold is Research Scientist at Google.Tony Jebara is Associate Professor of Computer Science at Columbia University.Dimitri Kanevsky is Research Scientist at Google.Stephen J. Wright is Professor of Computer Science at the University of Wisconsin-Madison.
Bewertungen
Anmelden