Yangquan Chen
Optimal Observation for Cyber-physical Systems
A Fisher-information-matrix-based Approach
Buch
Cyber-physical systems (CPS) embody the interaction between a computing system and a physical process, being distinguished from traditional embedded systems by being designed as networks of interacting elements rather than as isolated devices. The wireless sensor networks (WSNs) which are the focus of the research presented here are examples of the application of CPS in monitoring some physical quantities of the environment and relaying the processed information to a central hub.Optimal Observation for Cyber-physical Systems addresses the challenge, fundamental to the design of WSNs, presented by the obligatory trade-off between precise estim…
Mehr
Beschreibung
Cyber-physical systems (CPS) embody the interaction between a computing system and a physical process, being distinguished from traditional embedded systems by being designed as networks of interacting elements rather than as isolated devices. The wireless sensor networks (WSNs) which are the focus of the research presented here are examples of the application of CPS in monitoring some physical quantities of the environment and relaying the processed information to a central hub.Optimal Observation for Cyber-physical Systems addresses the challenge, fundamental to the design of WSNs, presented by the obligatory trade-off between precise estimates and system constraints. A unified theoretical framework, based on the well-established theory of optimal experimental design and providing consistent solutions to problems hitherto requiring a variety of approaches, is put forward to solve a large class of optimal observation problems. The Fisher information matrix plays a key role in this framework and makes it feasible to provide analytical solutions to some complex and important questions which could not be answered in the past. A set of MATLAB® files are also provided for the use of the reader (via download from www.springer.com/978-1-84882-655-7), to simulate the experiments that are described in the book.Optimal Observation for Cyber-physical Systems will be of interest to academic researchers in WSNs and to readers with an applied background in WSN implementation who will find most of the theoretical understanding of the key theory of optimal experimental design they need within this book. The use of multiple real-world examples to illustrate the theoretical parts of the book brings the subject into sharper focus than would an abstract theoretical disquisition. Researchers interested in convex optimization and in environmental monitoring and the estimation of diffusive pollution will also find the text of service.
CHF 179.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V104:
Folgt in ca. 10 Arbeitstagen
Produktdetails
Weitere Autoren: Sastry, Chellury R. / Song, Zhen / Tas, Nazif C.
- ISBN: 978-1-84882-655-7
- EAN: 9781848826557
- Produktnummer: 4735707
- Verlag: Springer London
- Sprache: Englisch
- Erscheinungsjahr: 2009
- Seitenangabe: 192 S.
- Masse: H24.0 cm x B16.3 cm x D2.0 cm 517 g
- Auflage: 1st Edition.2nd Printing. 2009
- Abbildungen: HC runder Rücken kaschiert
- Gewicht: 517
37 weitere Werke von Yangquan Chen:
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 165.50
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 100.50
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 65.00
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 128.95
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 107.70
A Fisher-information-matrix-based Approach
Ebook (EPUB Format)
CHF 107.70
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 130.00
A Fisher-information-matrix-based Approach
Ebook (EPUB Format)
CHF 107.90
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 154.50
A Fisher-information-matrix-based Approach
Ebook (PDF Format)
CHF 121.50
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.