Jim Albert
Bayesian Computation with R
Ebook (PDF Format)
Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. Early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restr…
Mehr
Beschreibung
Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. Early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling.
CHF 63.50
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
- ISBN: 978-0-387-71385-4
- EAN: 9780387713854
- Produktnummer: 33301117
- Verlag: Springer-Verlag GmbH
- Sprache: Englisch
- Erscheinungsjahr: 2007
- Seitenangabe: 268 S.
- Plattform: PDF
- Masse: 8'123 KB
- Auflage: 2007
- Abbildungen: Bibliographie
29 weitere Werke von Jim Albert:
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.