Produktbild
Francisco J. Sayas

Variational Techniques for Elliptic Partial Differential Equations

Theoretical Tools and Advanced Applications

Ebook (EPUB Format)

Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tool… Mehr

CHF 54.15

Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)

Versandfertig innerhalb 1-3 Werktagen
Versandkostenfrei

Produktdetails


Weitere Autoren: Brown, Thomas S. / Hassell, Matthew E.
  • ISBN: 978-0-429-01619-6
  • EAN: 9780429016196
  • Produktnummer: 29873014
  • Verlag: Taylor & Francis Ltd.
  • Sprache: Englisch
  • Erscheinungsjahr: 2019
  • Seitenangabe: 514 S.
  • Plattform: EPUB
  • Masse: 3'484 KB
  • Auflage: 1. Auflage
  • Abbildungen: 20 schwarz-weiße Abbildungen

Über den Autor


Francisco-Javier Sayas is a Professor of Mathematical Sciences at the University of Delaware. He has published over one hundred research articles in refereed journals, and is the author of Retarded Potentials and Time Domain Boundary Integral Equations. Thomas S. Brown is a lecturer in Computational and Applied Mathematics at Rice University. He received his PhD in Mathematics from the University of Delaware in 2018, under the supervision of Francisco-Javier Sayas. His expertise lies in the theoretical and numerical study of elastic wave propagation in piezoelectric media with applications to control problems. Matthew E. Hassell is a Systems Engineer at Lockheed Martin. He received his PhD in Applied Mathematics from the University of Delaware in 2016, under the supervision of Francisco-Javier Sayas, working on convolution quadrature techniques for problems in wave propagation and scattering by non-homogeneous media as well as viscous flow around obstacles.

3 weitere Werke von Francisco J. Sayas:


Bewertungen


0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.