Neural Network Learning
Theoretical Foundations
This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the…
Mehr
CHF 58.05
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
- ISBN: 978-0-511-82290-2
- EAN: 9780511822902
- Produktnummer: 17510097
- Verlag: Cambridge University Press
- Sprache: Englisch
- Erscheinungsjahr: 1999
- Seitenangabe: 0 S.
- Plattform: PDF
- Masse: 31'648 KB
12 weitere Werke von Martin Anthony:
Bewertungen
Anmelden