Junjie Wu
Advances in K-means Clustering
A Data Mining Thinking
Ebook (PDF Format)
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this old algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the dangerous uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides goo…
Mehr
Beschreibung
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this old algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the dangerous uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the 2010 National Excellent Doctoral Dissertation Award, the highest honor for not more than 100 PhD theses per year in China.
CHF 130.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
- ISBN: 978-3-642-29807-3
- EAN: 9783642298073
- Produktnummer: 18254237
- Verlag: Springer
- Sprache: Englisch
- Erscheinungsjahr: 2012
- Seitenangabe: 178 S.
- Plattform: PDF
- Masse: 4'576 KB
19 weitere Werke von Junjie Wu:
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.