Produktbild
Hong Zhou

Learn Data Mining Through Excel

A Step-by-Step Approach for Understanding Machine Learning Methods

Buch

Use popular data mining techniques in Microsoft Excel to better understand machine learning methods.Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help.Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These a… Mehr

CHF 49.50

Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)

Versandfertig innerhalb 1-3 Werktagen

Produktdetails


  • ISBN: 978-1-4842-5981-8
  • EAN: 9781484259818
  • Produktnummer: 33838045
  • Verlag: Apress
  • Sprache: Englisch
  • Erscheinungsjahr: 2020
  • Seitenangabe: 236 S.
  • Masse: H25.4 cm x B17.8 cm x D1.2 cm 453 g
  • Auflage: 1st ed
  • Abbildungen: Paperback
  • Gewicht: 453

Über den Autor


Hong Zhou, PhD is a professor of computer science and mathematics and has been teaching courses in computer science, data science, mathematics, and informatics at the University of Saint Joseph for more than 15 years. His research interests include bioinformatics, data mining, software agents, and blockchain. Prior to his current position, he was as a Java developer in Silicon Valley. Dr. Zhou believes that learners can develop a better foundation of data mining models when they visually experience them step-by-step, which is what Excel offers. He has employed Excel in teaching data mining and finds it an effective approach for both data mining learners and educators.

43 weitere Werke von Hong Zhou:


Bewertungen


0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.