Patterns of Scalable Bayesian Inference
Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with a wide range of assumptions and applicability. Patterns of Scalable Bayesian Inference seeks to identify unifying principles, p…
Mehr
CHF 129.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
Weitere Autoren: Johnson, Matthew James / Adams, Ryan P.
- ISBN: 978-1-68083-218-1
- EAN: 9781680832181
- Produktnummer: 21877522
- Verlag: now publishers Inc
- Sprache: Englisch
- Erscheinungsjahr: 2016
- Seitenangabe: 148 S.
- Masse: H23.4 cm x B15.6 cm x D0.8 cm 219 g
- Gewicht: 219
- Sonstiges: General (US: Trade)
Bewertungen
Anmelden