Geometry and Analysis of Metric Spaces via Weighted Partitions
The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text: It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic.Various relations between metrics and measures such as bilipschitz equivalence…
Mehr
CHF 65.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
- ISBN: 978-3-030-54153-8
- EAN: 9783030541538
- Produktnummer: 35236228
- Verlag: Springer International Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2020
- Seitenangabe: 172 S.
- Masse: H23.5 cm x B15.5 cm x D0.9 cm 271 g
- Auflage: 1st ed. 2020
- Abbildungen: Paperback
- Gewicht: 271
4 weitere Werke von Jun Kigami:
Bewertungen
Anmelden