XGBoost. The Extreme Gradient Boosting for Mining Applications
Technical Report from the year 2017 in the subject Computer Science - Internet, New Technologies, grade: 8, , language: English, abstract: Tree boosting has empirically proven to be a highly effective and versatile approach for data-driven modelling. The core argument is that tree boosting can adaptively determine the local neighbourhoods of the model thereby taking the bias-variance trade-off into consideration during model fitting. Recently, a tree boosting method known as XGBoost has gained popularity by providing higher accuracy. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade-off even more…
Mehr
CHF 35.90
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V301:
Libri-Titel folgt in ca. 2 Arbeitstagen
Produktdetails
- ISBN: 978-3-668-66061-8
- EAN: 9783668660618
- Produktnummer: 26483773
- Verlag: Grin Verlag
- Sprache: Englisch
- Erscheinungsjahr: 2018
- Seitenangabe: 60 S.
- Masse: H21.0 cm x B14.8 cm x D0.4 cm 101 g
- Abbildungen: Paperback
- Gewicht: 101
9 weitere Werke von Nonita Sharma:
Bewertungen
Anmelden