Produktbild
Trevor Hastie

The Elements of Statistical Learning

Data Mining, Inference, and Prediction, Second Edition

Buch

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in… Mehr

CHF 108.00

Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)

Versandfertig innerhalb 1-3 Werktagen

Produktdetails


Weitere Autoren: Tibshirani, Robert / Friedman, Jerome
  • ISBN: 978-0-387-84857-0
  • EAN: 9780387848570
  • Produktnummer: 4290300
  • Verlag: Springer Nature EN
  • Sprache: Englisch
  • Erscheinungsjahr: 2017
  • Seitenangabe: 745 S.
  • Masse: H24.4 cm x B16.9 cm x D4.0 cm 1'208 g
  • Auflage: 2. A.
  • Abbildungen: s/w. Abb.
  • Gewicht: 1208

Über den Autor


Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

9 weitere Werke von Trevor Hastie:


Bewertungen


0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.