Cause Effect Pairs in Machine Learning
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (Does altitude cause a change in atmospheric pressure, or vice versa?) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a causal mechanism, in the sense that the values of one variable may have been generated from the values of the other. This book pro…
Mehr
CHF 115.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
Weitere Autoren: Batu, Berna Bakir (Hrsg.) / Statnikov, Alexander (Hrsg.)
- ISBN: 978-3-030-21812-6
- EAN: 9783030218126
- Produktnummer: 35107931
- Verlag: Springer International Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2020
- Seitenangabe: 388 S.
- Masse: H23.5 cm x B15.5 cm x D2.0 cm 587 g
- Auflage: 1st ed. 2019
- Abbildungen: Paperback
- Gewicht: 587
13 weitere Werke von Isabelle (Hrsg.) Guyon:
Bewertungen
Anmelden