Asymptotic Optimal Inference for Non-Ergodic Models
This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models…
Mehr
CHF 136.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
Weitere Autoren: Scott, D. J.
- ISBN: 978-0-387-90810-6
- EAN: 9780387908106
- Produktnummer: 11012097
- Verlag: Springer New York
- Sprache: Englisch
- Erscheinungsjahr: 1983
- Seitenangabe: 188 S.
- Masse: H23.5 cm x B15.5 cm x D1.0 cm 295 g
- Auflage: Softcover reprint of the original 1st ed. 1983
- Abbildungen: Paperback
- Gewicht: 295
1 weiteres Werk von I. V. Basawa:
Bewertungen
Anmelden