Bayesian Inference for Probabilistic Risk Assessment
A Practitioner's Guidebook
Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given pro…
Mehr
CHF 223.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V301:
Libri-Titel folgt in ca. 2 Arbeitstagen
Produktdetails
Weitere Autoren: Smith, Curtis
- ISBN: 978-1-84996-186-8
- EAN: 9781849961868
- Produktnummer: 6382905
- Verlag: Springer-Verlag GmbH
- Sprache: Englisch
- Erscheinungsjahr: 2011
- Seitenangabe: 225 S.
- Masse: H24.1 cm x B16.0 cm x D1.7 cm 529 g
- Abbildungen: Book; 100 schwarz-weiße Abbildungen
- Gewicht: 529
Über den Autor
Dana Kelly and Curtis Smith are both specialists in Bayesian inference for risk and reliability analysis, working at the Idaho National Laboratory, USA. They provide support to the Nuclear Regulatory Commission, NASA, the Joint Research Centre in Pettern, and others. They are the authors of numerous refereed publications in the field.
3 weitere Werke von Dana Kelly:
Bewertungen
Anmelden