Ensemble Machine Learning
Methods and Applications
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed ensemble learning by researchers in computational intelligence and machine learning, it is known to improve a decision system's robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as boosting and random forest facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object track…
Mehr
CHF 237.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V301:
Libri-Titel folgt in ca. 2 Arbeitstagen
Produktdetails
Weitere Autoren: Ma, Yunqian (Hrsg.)
- ISBN: 978-1-4419-9325-0
- EAN: 9781441993250
- Produktnummer: 10710428
- Verlag: Springer-Verlag GmbH
- Sprache: Englisch
- Erscheinungsjahr: 2012
- Seitenangabe: 329 S.
- Masse: H24.1 cm x B16.0 cm x D2.2 cm 676 g
- Abbildungen: 84 schwarz-weiße Abbildungen, 13 schwarz-weiße Tabellen
- Gewicht: 676
Über den Autor
Dr. Zhang works for Microsoft. Dr. Ma works for Honeywell.
2 weitere Werke von Cha (Hrsg.) Zhang:
Bewertungen
Anmelden