Peter Müller
Probabilities of Counting Codes
Buch
In many cases counters are used to count special events within an endless sequence of events. This paper discusses a specific calculation, related to the probability of a counter overrun if the special event occurs not in a predictable way but with a certain probability.Different counter codes are compared with each other.A probability formula is developed for special scenarios which are normally analyzed by state diagrams and which can be numerically solved by the related Markov chains. The target is to enable a non-numerical discussion of the topic.It is shown how formulas can be found based on the rules of the probability theory, and their…
Mehr
Beschreibung
In many cases counters are used to count special events within an endless sequence of events. This paper discusses a specific calculation, related to the probability of a counter overrun if the special event occurs not in a predictable way but with a certain probability.Different counter codes are compared with each other.A probability formula is developed for special scenarios which are normally analyzed by state diagrams and which can be numerically solved by the related Markov chains. The target is to enable a non-numerical discussion of the topic.It is shown how formulas can be found based on the rules of the probability theory, and their correctness is verified by a comparison with Markov chains.
CHF 26.90
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
- ISBN: 978-3-8423-8038-7
- EAN: 9783842380387
- Produktnummer: 12037991
- Verlag: Books On Demand
- Sprache: Englisch
- Erscheinungsjahr: 2011
- Seitenangabe: 112 S.
- Masse: H22.0 cm x B15.1 cm x D1.5 cm 172 g
- Abbildungen: Paperback
- Gewicht: 172
100 weitere Werke von Peter Müller:
Ebook (EPUB Format)
CHF 15.00
Ebook (PDF Format)
CHF 700.00
Ebook (PDF Format)
CHF 700.00
Ebook (PDF Format)
CHF 15.00
Ebook (PDF Format)
CHF 21.90
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.