Xin-She Yang
Mathematical Foundations of Nature-Inspired Algorithms
Ebook (PDF Format)
This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization pro…
Mehr
Beschreibung
This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.
CHF 59.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
Weitere Autoren: He, Xing-Shi
- ISBN: 978-3-030-16936-7
- EAN: 9783030169367
- Produktnummer: 31357983
- Verlag: Springer
- Sprache: Englisch
- Erscheinungsjahr: 2019
- Plattform: PDF
- Masse: 1'600 KB
100 weitere Werke von Xin-She Yang:
Ebook (PDF Format)
CHF 295.00
Ebook (PDF Format)
CHF 165.50
Ebook (PDF Format)
CHF 295.00
Ebook (PDF Format)
CHF 236.00
Ebook (PDF Format)
CHF 236.00
Ebook (PDF Format)
CHF 236.00
Ebook (PDF Format)
CHF 259.50
Ebook (PDF Format)
CHF 295.00
Ebook (PDF Format)
CHF 165.50
Ebook (PDF Format)
CHF 236.00
Ebook (PDF Format)
CHF 295.00
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.