Semi-Supervised Learning
Background, Applications and Future Directions
Semi-supervised learning is an important area of machine learning. It deals with problems that involve a lot of unlabeled data and very scarce labeled data. The book focuses on some state-of-the-art research on semi-supervised learning. In the first chapter, Weng, Dornaika and Jin introduce a graph construction algorithm named the constrained data self-representative graph construction (CSRGC). In the second chapter, to reduce the graph construction complexity, Zhang et al. use anchors that were a special subset chosen from the original data to construct the full graph, while randomness was injected into graphs to improve the classification a…
Mehr
CHF 305.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
Weitere Autoren: Huang, Kaizhu (Hrsg.)
- ISBN: 978-1-5361-3556-5
- EAN: 9781536135565
- Produktnummer: 27153658
- Verlag: Nova Science Publishers Inc
- Sprache: Englisch
- Erscheinungsjahr: 2018
- Seitenangabe: 229 S.
- Masse: H23.5 cm x B23.4 cm x D1.6 cm 458 g
- Gewicht: 458
Bewertungen
Anmelden