Homological Mirror Symmetry and Tropical Geometry
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the tropical approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim…
Mehr
CHF 115.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
L048:
Lieferbar in 48 Stunden
Produktdetails
Weitere Autoren: Catanese, Fabrizio (Hrsg.) / Kontsevich, Maxim (Hrsg.) / Pantev, Tony (Hrsg.) / Soibelman, Yan (Hrsg.) / Zharkov, Ilia (Hrsg.)
- ISBN: 978-3-319-06513-7
- EAN: 9783319065137
- Produktnummer: 16583476
- Verlag: Springer Nature EN
- Sprache: Englisch
- Erscheinungsjahr: 2014
- Seitenangabe: 436 S.
- Masse: H23.5 cm x B15.5 cm 6'788 g
- Abbildungen: Farb., s/w. Abb.
- Reihenbandnummer: 15
- Gewicht: 6788
- Sonstiges: Research
2 weitere Werke von Ricardo (Hrsg.) Castano-Bernard:
Bewertungen
Anmelden