Produktbild
Elias T. Krainski

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Ebook (PDF Format)

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications.This book has been authored by leading expe… Mehr

CHF 54.15

Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)

Versandfertig innerhalb 1-3 Werktagen
Versandkostenfrei

Produktdetails


Weitere Autoren: Gómez-Rubio, Virgilio / Bakka, Haakon / Lenzi, Amanda / Castro-Camilo, Daniela / Simpson, Daniel / Lindgren, Finn / Rue, Håvard
  • ISBN: 978-0-429-62985-3
  • EAN: 9780429629853
  • Produktnummer: 29588915
  • Verlag: Taylor & Francis Ltd.
  • Sprache: Englisch
  • Erscheinungsjahr: 2018
  • Seitenangabe: 298 S.
  • Plattform: PDF
  • Masse: 41'565 KB
  • Auflage: 1. Auflage

Über den Autor


Elias T. Krainski is a Professor Adjunto in the Department of Statistics, Universidade Federal do Paraná (Curitiba, Brazil). He has been working on new space-time models and applications in epidemiology and fisheries with INLA and SPDE.Virgilio Gómez-Rubio is an Associate Professor in the Department of Mathematics, Universidad de Castilla-La Mancha (Albacete, Spain). His research interests are on Bayesian inference, spatial statistics and computational statistics. He has also developed several packages for the R language on spatial data analysis and Bayesian computation.Haakon Bakka is a Post Doctoral Fellow at the King Abdullah University of Science and Technology. He has given many courses in both INLA and the SPDE approach, and parts of his research on spatial models are included in this book.Amanda Lenzi is a Post-Doctoral Fellow at the King Abdullah University of Science and Technology in Saudi Arabia, where she is part of the Spatio-Temporal Statistics and Data Science Group. Her research interest is on spatial and spatio-temporal statistics with applications in environmental science, especially in wind energy.Daniela Castro-Camilo is a Post-Doctoral Fellow working in the Extreme Statistics Research Group at the King Abdullah University of Science and Technology, in Saudi Arabia. Her research interest is on the theory and applications of multivariate and spatial extremes, with a particular focus in environmental applications.Daniel Simpson is an Assistant Professor in the Department of Statistical Sciences, University of Toronto. His research interests are on Computational Statistics, Spatial Statistics, Bayesian Statistics, and Numerical Linear Algebra. He has also been working on Penalized Complexity priors and the analysis of point patterns with INLA and SPDEs.Finn Lindgren is a Chair of Statistics in the School of Mathematics at the University of Edinburgh, Scotland. His research covers spatial stochastic modeling and associated computational methods, including applications in climate science, ecology, medical statistics, geosciences, and general environmetrics. He developed the core methods and code for the SPDE interface of the R-INLA package, is a co-developer of the related packages excursions and inlabru, and has given lecture series and practical workshops on spatial modeling with INLA.Håvard Rue is a Professor of Statistics, at the CEMSE Division at the King Abdullah University of Science and Technology, Saudi Arabia, where he leads a research group on Bayesian Computational Statistics & Modeling. He is the main developer of the INLA methodology and the R-INLA Project.

1 weiteres Werk von Elias T. Krainski:


Bewertungen


0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.