Algorithmic Learning in a Random World
Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability.This new monograph integrates mathematical theory and revealing experimental work. It demonstrates mathematically the validity of the reliability claimed by conformal predictors when they are applied to independent and identically distributed data, and it confirms experimentally that the accuracy is sufficient for many practical problems. Later chapters generalize these results to models calle…
Mehr
CHF 138.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
Weitere Autoren: Gammerman, Alex / Shafer, Glenn
- ISBN: 978-1-4419-3471-0
- EAN: 9781441934710
- Produktnummer: 10301181
- Verlag: Springer-Verlag New York Inc.
- Sprache: Englisch
- Erscheinungsjahr: 2010
- Seitenangabe: 324 S.
- Masse: H23.5 cm x B15.7 cm x D2.3 cm 510 g
- Auflage: Softcover reprint of hardcover 1st ed. 2005
- Abbildungen: 62 Illustrations, black and white; XVI, 324 p. 62 illus.
- Gewicht: 510
17 weitere Werke von Vladimir Vovk:
Bewertungen
Anmelden