Congruences for L-Functions
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expand…
Mehr
CHF 136.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
Weitere Autoren: Williams, Kenneth S.
- ISBN: 978-90-481-5490-6
- EAN: 9789048154906
- Produktnummer: 10317611
- Verlag: Springer Netherlands
- Sprache: Englisch
- Erscheinungsjahr: 2010
- Seitenangabe: 272 S.
- Masse: H23.5 cm x B15.5 cm x D1.4 cm 417 g
- Auflage: Softcover reprint of hardcover 1st ed. 2000
- Abbildungen: Paperback
- Gewicht: 417
1 weiteres Werk von J. Urbanowicz:
Bewertungen
Anmelden