Bayesian Missing Data Problems
EM, Data Augmentation and Noniterative Computation
Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-world problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms. After introducing the missing data problems, Bayesian approach, and posterior computation, the book succinctly describes EM…
Mehr
CHF 71.60
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
Weitere Autoren: Tian, Guo-Liang / Ng, Kai Wang
- ISBN: 978-1-4200-7750-6
- EAN: 9781420077506
- Produktnummer: 18422993
- Verlag: Taylor & Francis Ltd.
- Sprache: Englisch
- Erscheinungsjahr: 2009
- Seitenangabe: 344 S.
- Plattform: PDF
- Masse: 2'806 KB
Über den Autor
Ming T. Tan is Professor of Biostatistics in the Department of Epidemiology and Preventive Medicine at the University of Maryland School of Medicine and Director of the Division of Biostatistics at the University of Maryland Greenebaum Cancer Center.Guo-Liang Tian is Associate Professor in the Department of Statistics and Actuarial Science at the University of Hong Kong. Kai Wang Ng is Professor and Head of the Department of Statistics and Actuarial Science at the University of Hong Kong.
2 weitere Werke von Ming T. Tan:
Bewertungen
Anmelden