Spline Functions on Triangulations
Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory. A detailed mathematical treatment of polynomial splines on triangulations is outlined, providing a basis for developing practical methods for using splines in numerous application areas. The detailed treatment of the Bernstein-Bézier representation of polynomials will provide a valuable source for researchers and students in CAGD. Chapters on smoo…
Mehr
CHF 195.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V112:
Lieferbar in ca. 10-20 Arbeitstagen
Produktdetails
- ISBN: 978-0-521-87592-9
- EAN: 9780521875929
- Produktnummer: 2796468
- Verlag: Cambridge Academic
- Sprache: Englisch
- Erscheinungsjahr: 2007
- Seitenangabe: 608 S.
- Masse: H23.9 cm x B16.4 cm x D3.5 cm 989 g
- Gewicht: 989
Über den Autor
Ming-Jun Lai is a Professor of Mathematics at the University of Georgia. Larry Schumaker is the Stevenson Professor of Mathematics at Vanderbilt University.
2 weitere Werke von Ming-Jun Lai:
Bewertungen
Anmelden