Cardiac Electrophysiology Methods and Models
Biomedical, pharmaceutical and medical personnel are interested in studying aspects of arrhythmias at a basic, translational and applied level. The overall understanding of the molecular basis of disease has dramatically increased, as well as the number of available and emerging molecular, pharmacological and device treatment based therapies. Cardiac Electrophysiology Methods and Models will review key research methods and protocols in cardiac electrophysiology with a focus on advantages, pitfalls, practical implementation and collaborative cross-functional research.
CHF 166.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V301:
Libri-Titel folgt in ca. 2 Arbeitstagen
Produktdetails
Weitere Autoren: Iaizzo, Paul A. (Hrsg.) / Xiao, Yong-Fu (Hrsg.) / He, Bin (Hrsg.)
- ISBN: 978-1-4419-6657-5
- EAN: 9781441966575
- Produktnummer: 6803381
- Verlag: Springer-Verlag GmbH
- Sprache: Englisch
- Erscheinungsjahr: 2010
- Seitenangabe: 350 S.
- Masse: H24.2 cm x B15.9 cm x D3.0 cm 757 g
- Abbildungen: 80 schwarz-weiße und 89 farbige Abbildungen, 19 schwarz-weiße Tabellen
- Gewicht: 757
Über den Autor
Daniel C. Sigg, MD, PhD is Adjunct Assistant Professor of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA Paul A. Iaizzo, PhD PhD is Professor of Surgery, Integrative Biology and Physiology and The Carlson School of Management, he is also Director of Education of the Lillehei Heart Institute and Associate Director for the Institute for Engineering in Medicine, he also holds the Medtronic Professorship for Visible Heart Research , University of Minnesota, Minneapolis, Minnesota, USA Yong-Fu Xiao, MD, PhD is Principal Scientist at Medtronic, Inc., New Therapies & Diagnostics Management, Cardiac Rhythm Disease Management, Mounds View, MN, USA Bin He, PhD is Distinguished McKnight University Professor and Professor of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
1 weiteres Werk von Daniel C. (Hrsg.) Sigg:
Bewertungen
Anmelden