Produktbild
Albert Vexler

Statistical Testing Strategies in the Health Sciences

Ebook (PDF Format)

Statistical Testing Strategies in the Health Sciences provides a compendium of statistical approaches for decision making, ranging from graphical methods and classical procedures through computationally intensive bootstrap strategies to advanced empirical likelihood techniques. It bridges the gap between theoretical statistical methods and practical procedures applied to the planning and analysis of health-related experiments.The book is organized primarily based on the type of questions to be answered by inference procedures or according to the general type of mathematical derivation. It establishes the theoretical framework for each method,… Mehr

CHF 56.75

Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)

Versandfertig innerhalb 1-3 Werktagen
Versandkostenfrei

Produktdetails


Weitere Autoren: Hutson, Alan D. / Chen, Xiwei
  • ISBN: 978-1-4987-3084-6
  • EAN: 9781498730846
  • Produktnummer: 20263398
  • Verlag: Taylor & Francis Ltd.
  • Sprache: Englisch
  • Erscheinungsjahr: 2017
  • Seitenangabe: 703 S.
  • Plattform: PDF
  • Masse: 22'219 KB
  • Abbildungen: Lines - 763; Total - 8136, 92 schwarz-weiße Abbildungen, 20 schwarz-weiße Tabellen

Über den Autor


Albert Vexler is a tenured professor in the Department of Biostatistics at the State University of New York (SUNY) at Buffalo. Dr. Vexler is the associate editor of Biometrics and BMC Medical Research Methodology. He is the author and coauthor of various publications that contribute to the theoretical and applied aspects of statistics in medical research. Many of his papers and statistical software developments have appeared in statistical and biostatistical journals that have top-rated impact factors and are historically recognized as leading scientific journals. Dr. Vexler was awarded a National Institutes of Health grant to develop novel nonparametric data analysis and statistical methodology. His research interests include receiver operating characteristic curve analysis, measurement error, optimal designs, regression models, censored data, change point problems, sequential analysis, statistical epidemiology, Bayesian decision-making mechanisms, asymptotic methods of statistics, forecasting, sampling, optimal testing, nonparametric tests, empirical likelihoods, renewal theory, Tauberian theorems, time series, categorical analysis, multivariate analysis, multivariate testing of complex hypotheses, factor and principal component analysis, statistical biomarker evaluations, and best combinations of biomarkers.Alan D. Hutson is the chair of biostatistics and bioinformatics at Roswell Park Cancer Institute. He is also the biostatistical, epidemiological, and research design director for SUNY's National Institutes of Health-funded Clinical and Translational Research Award. Dr. Hutson is a fellow of the American Statistical Association, the associate editor of Communications in Statistics and the Sri Lankan Journal of Applied Statistics, and a New York State NYSTAR Distinguished Professor. He has written more than 200 peer-reviewed publications. Dr. Hutson's methodological work focuses on nonparametric methods for biostatistical applications as they pertain to statistical functionals. He also has several years of experience in the design and analysis of clinical trials.Xiwei Chen is a biostatistician at Johnson & Johnson Vision Care, Inc. She obtained her PhD in biostatistics from SUNY at Buffalo, where her advisor was Dr. Albert Vexler. Dr. Chen is the author or coauthor of more than 10 papers and several book chapters on biostatistical areas concerning statistical approaches related to disease diagnoses. She is also very active as a reviewer for statistical journals. Her research interests include empirical likelihood methods, the receiver operating characteristic curve methodology, and statistical diagnosis and its applications.

8 weitere Werke von Albert Vexler:


Bewertungen


0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.