Machine Learning for Dynamic Software Analysis: Potentials and Limits
International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers
Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagst…
Mehr
CHF 84.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V301:
Libri-Titel folgt in ca. 2 Arbeitstagen
Produktdetails
Weitere Autoren: Hähnle, Reiner (Hrsg.) / Meinke, Karl (Hrsg.)
- ISBN: 978-3-319-96561-1
- EAN: 9783319965611
- Produktnummer: 27680132
- Verlag: Springer-Verlag GmbH
- Sprache: Englisch
- Erscheinungsjahr: 2018
- Masse: H23.5 cm x B15.5 cm x D1.4 cm 411 g
- Auflage: 2018
- Abbildungen: Book; Bibliographie
- Reihenbandnummer: 11026
- Gewicht: 411
3 weitere Werke von Amel (Hrsg.) Bennaceur:
Bewertungen
Anmelden