Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear id…
Mehr
CHF 64.50
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
Weitere Autoren: Sundareswaran, Anveshrithaa / Ghela, Shrusti
- ISBN: 978-1-00-043831-4
- EAN: 9781000438314
- Produktnummer: 36001319
- Verlag: Taylor & Francis Ltd.
- Sprache: Englisch
- Erscheinungsjahr: 2021
- Seitenangabe: 174 S.
- Plattform: PDF
- Auflage: 1. Auflage
- Abbildungen: 46 schwarz-weiße Abbildungen, 46 schwarz-weiße Zeichnungen
Über den Autor
133344180
14 weitere Werke von B. K. Tripathy:
Bewertungen
Anmelden