Testing Statistical Hypotheses
The third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In addition, an introduction to the theory of resampling methods such as the bootstrap is developed. The sections on multiple testing and goodness of fit testing are expanded. The text is suitable for Ph.D. students in statistics and includes over 300 new problems out of a total of more than 760.
CHF 165.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V104:
Folgt in ca. 10 Arbeitstagen
Produktdetails
Weitere Autoren: Lehmann, E. L.
- ISBN: 978-3-030-70577-0
- EAN: 9783030705770
- Produktnummer: 37750919
- Verlag: Springer International Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2022
- Seitenangabe: 1048 S.
- Masse: H24.1 cm x B16.0 cm x D6.7 cm 1'891 g
- Auflage: 4th ed. 2022
- Abbildungen: HC runder Rücken kaschiert
- Gewicht: 1891
Über den Autor
E.L. Lehmann (1917 - 2009) was an American statistician and professor of statistics at the University of California, Berkeley. He made significant contributions to nonparametric hypothesis testing, and he is one of the eponyms of the Lehmann-Scheffé theorem and of the Hodges-Lehmann estimator. Dr. Lehmann was a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands and the University of Chicago. He was the author of Elements of Large-Sample Theory (Springer 1999) and Theory of Point Estimation, Second Edition (Springer 1998, with George Casella). Joseph P. Romano has been on faculty in the Statistics Department at Stanford since 1986. Since 2007, he has held a joint professorship appointment in both Statistics and Economics. He is a coauthor of three books, as well as over 100 journal articles. Dr. Romano was named NOGLSTP's 2021 LGBTQ+ Scientist of the Year, has been a recipient of the Presidential Young Investigator Award and many other grants from the National Science Foundation, and is a Fellow of the Institute of Mathematical Statistics and of the International Association of Applied Econometrics. His research has focused on such topics as: bootstrap and resampling methods, subsampling, randomization methods, inference, optimality, large-sample theory, nonparametrics, multiple hypothesis testing, and econometrics. He has invented or co-invented a variety of new statistical methods, including subsampling and the stationary bootstrap, as well as methods for multiple hypothesis testing. These methods have been applied to such diverse fields as clinical trials, climate change, finance, and economics.
7 weitere Werke von Joseph P. Romano:
Bewertungen
Anmelden