Daniel Griffith
Spatial Regression Analysis Using Eigenvector Spatial Filtering
Ebook (EPUB Format)
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (no…
Mehr
Beschreibung
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre.Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient modelsIncludes computer code and template datasets for further modelingProvides comprehensive coverage of related concepts in spatial data analysis and spatial statistics
CHF 169.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
Weitere Autoren: Chun, Yongwan / Li, Bin
- ISBN: 978-0-12-815692-6
- EAN: 9780128156926
- Produktnummer: 35968663
- Verlag: Elsevier Science & Techn.
- Sprache: Englisch
- Erscheinungsjahr: 2019
- Seitenangabe: 286 S.
- Plattform: EPUB
- Masse: 31'621 KB
Über den Autor
Daniel A. Griffith is an Ashbel Smith Professor of Geospatial Information Sciences at the University of Texas at Dallas, affiliated professor in the College of Public Health at the University of South Florida, and adjunct professor in the Department of Resource Economics and Environmental Sociology at the University of Alberta. He holds degrees in Mathematics, Statistics, and Geography, and arguably is the inventor of Moran eigenvector spatial filtering. He is a two-time Fulbright Senior Specialist, an AAG Distinguished Research Honors awardee, and an elected fellow of the Royal Society of Canada, UCGIS, AAG, American Association for the Advancement of Science, American Statistical Association, Regional Science Association International, and Spatial Econometrics Association.
37 weitere Werke von Daniel Griffith:
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.