Soil Organic Carbon Mapping Using Hyperspectral Remote Sensing and ANN
Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analyzed to predict the spatial SOC content, using multivariate predictive modeling technique-artificial neural network (ANN). EO1-Hyperion (400 - 2500 nm) hyper-spectral image, field and laboratory scale data sets (350 - 2500 nm) were generated, consisting of laboratory estimated SOC content of collected soil samples (dependent variable) and their corresponding reflection data of SOC sensitive spectral bands (predictive variables). For each data set, ANN predictive models were developed and three data set (imag…
Mehr
CHF 47.90
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
Weitere Autoren: Saha, S. K. / Kumar, Suresh
- ISBN: 978-3-330-32603-3
- EAN: 9783330326033
- Produktnummer: 37528402
- Verlag: LAP Lambert Academic Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2017
- Seitenangabe: 60 S.
- Masse: H22.0 cm x B15.0 cm x D0.4 cm 107 g
- Abbildungen: Paperback
- Gewicht: 107
Über den Autor
Mr. Sudheer Kumar Tiwari is working as Scientist in Andhra Pradesh Space Applications Centre (APSAC), Planning Department, Govt. of Andhra Pradesh. He has completed his M.Tech. in Remote Sensing and GIS with distinction from Indian Institute of Remote Sensing, ISRO, Dehradun in 2011.
Bewertungen
Anmelden