Robustness of Multiple Clustering Algorithms on Hyperspectral Images
By clustering data into homogeneous groups, analysts can accurately detect anomalies within an image. This research was conducted to determine the most robust algorithm and settings for clustering hyperspectral images. Multiple images were analyzed, employing a variety of clustering algorithms under numerous conditions to include distance measurements for the algorithms and prior data reduction techniques. Various clustering algorithms were employed, including a hierarchical method, ISODATA, K-means, and X-means, and were used on a simple two dimensional dataset in order to discover potential problems with the algorithms. Subsequently, the le…
Mehr
CHF 70.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
- ISBN: 978-1-288-31621-2
- EAN: 9781288316212
- Produktnummer: 39576089
- Verlag: BiblioScholar
- Sprache: Englisch
- Erscheinungsjahr: 2012
- Seitenangabe: 130 S.
- Masse: H24.6 cm x B18.7 cm x D1.5 cm 261 g
- Gewicht: 261
Bewertungen
Anmelden