Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates
Assume that there is some analytic structure, a differential equation or a stochastic process for example, on a metric space. To describe asymptotic behaviours of analytic objects, the original metric of the space may not be the best one. Every now and then one can construct a better metric which is somehow ``intrinsic'' with respect to the analytic structure and under which asymptotic behaviours of the analytic objects have nice expressions. The problem is when and how one can find such a metric. This considers the above problem in the case of stochastic processes associated with Dirichlet forms derived from resistance forms.
CHF 105.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V106:
Fremdlagertitel. Lieferzeit unbestimmt
Produktdetails
- ISBN: 978-0-8218-5299-6
- EAN: 9780821852996
- Produktnummer: 23377162
- Verlag: American Mathematical Society
- Sprache: Englisch
- Erscheinungsjahr: 2012
- Seitenangabe: 132 S.
- Masse: H25.4 cm x B17.8 cm 218 g
- Gewicht: 218
- Sonstiges: General (US: Trade)
4 weitere Werke von Jun Kigami:
Bewertungen
Anmelden