Realtime Data Mining
Self-Learning Techniques for Recommendation Engines
????Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.? The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's classic data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary act…
Mehr
CHF 122.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
Weitere Autoren: Thess, Michael
- ISBN: 978-3-319-34445-4
- EAN: 9783319344454
- Produktnummer: 20625459
- Verlag: Springer International Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2016
- Seitenangabe: 340 S.
- Masse: H23.5 cm x B15.5 cm x D1.8 cm 517 g
- Auflage: Softcover reprint of the original 1st ed. 2013
- Abbildungen: Paperback
- Gewicht: 517
2 weitere Werke von Alexander Paprotny:
Bewertungen
Anmelden