Privacy Preservation in IoT: Machine Learning Approaches
A Comprehensive Survey and Use Cases
This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.The issue…
Mehr
CHF 65.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
Weitere Autoren: Xiang, Yong / Yu, Shui / Gao, Longxiang
- ISBN: 978-981-1917-96-7
- EAN: 9789811917967
- Produktnummer: 38808966
- Verlag: Springer Nature Singapore
- Sprache: Englisch
- Erscheinungsjahr: 2022
- Seitenangabe: 132 S.
- Masse: H23.5 cm x B15.5 cm x D0.7 cm 213 g
- Auflage: 1st ed. 2022
- Abbildungen: Paperback
- Gewicht: 213
Über den Autor
151403803
4 weitere Werke von Youyang Qu:
Bewertungen
Anmelden