Multivariate Statistical Machine Learning Methods for Genomic Prediction
This book is open access under a CC BY 4.0 licenseThis open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnin…
Mehr
CHF 72.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V104:
Folgt in ca. 10 Arbeitstagen
Produktdetails
Weitere Autoren: Montesinos López, Abelardo / Crossa, José
- ISBN: 978-3-030-89009-4
- EAN: 9783030890094
- Produktnummer: 38293612
- Verlag: Springer International Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2022
- Seitenangabe: 716 S.
- Masse: H24.1 cm x B16.0 cm x D4.4 cm 1'226 g
- Auflage: 1st ed. 2022
- Abbildungen: HC runder Rücken kaschiert
- Gewicht: 1226
Über den Autor
Dr. Osval Antonio Montesinos López earned a PhD in Statistics and Biometry from the University of Nebraska-Lincoln, USA, in 2014. He is currently a Professor of Statistics, Probability and Statistical Learning Methods at the Facultad de Telemática, University of Colima, México. His areas of interest include the development of novel genomic prediction models for plant breeding, high-dimensional data analysis, generalized linear mixed models and Bayesian analysis, multivariate analysis and experimental designs. He has contributed univariate and multivariate genomic prediction models for predicting breeding values in plants with normal, binary, count and ordinal phenotypes.Dr. Abelardo Montesinos López holds a PhD in Probability and Statistics from the Centro de Investigación en Matemáticas (CIMAT), Guanajuato, México. He is currently a Professor of Statistical Interference, Probability and Statistical Learning Methods at the Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Mexico. His areas of interest are: development of novel genomic prediction models for plant breeding, high dimensional data analysis, generalized linear mixed models, survival analysis, Bayesian analysis and multivariate analysis. He has contributed univariate and multivariate genomic prediction models for predicting breeding values in plants with normal, binary, count and ordinal phenotypes.Dr. José Crossa is a distinguished Scientist at the Biometrics and Statistics Unit of the International Maize and Wheat Improvement Center (CIMMYT). He has contributed to the statistical analyses of plant breeding trials with an emphasis on modeling genotype x environment interactions, QTL x environment interactions and genomic x environment interactions. He has significantly advanced the integration of essential factors such as pedigree and trial data into genomic selection for crop breeding, by creating and describing sophisticated statistical models of proven effectiveness that have since been widely adopted. He is a Fellow of the Agronomy Society of America and of the Crop Science Society of America, Member of the Mexican Academy of Science, Member of the Mexican National Research System of the National Council of Research and Technology, invited professor at Universities in Mexico and Uruguay, and Adjunct Professor at the Department of Statistics and Department of Plant Science at the University of Nebraska-Lincoln, USA.
1 weiteres Werk von Osval Antonio Montesinos López:
Bewertungen
Anmelden