Minimum-Distortion Embedding
Embeddings provide concrete numerical representations of otherwise abstract items, for use in downstream tasks. For example, a biologist might look for subfamilies of related cells by clustering embedding vectors associated with individual cells, while a machine learning practitioner might use vector representations of words as features for a classification task. In this monograph the authors present a general framework for faithful embedding called minimum-distortion embedding (MDE) that generalizes the common cases in which similarities between items are described by weights or distances. The MDE framework is simple but general. It include…
Mehr
CHF 158.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
Weitere Autoren: Ali, Alnur / Boyd, Stephen
- ISBN: 978-1-68083-888-6
- EAN: 9781680838886
- Produktnummer: 37515334
- Verlag: Now Publishers Inc
- Sprache: Englisch
- Erscheinungsjahr: 2021
- Seitenangabe: 188 S.
- Masse: H23.4 cm x B15.6 cm x D1.0 cm 295 g
- Abbildungen: Paperback
- Gewicht: 295
Bewertungen
Anmelden