Meta Learning for Selection of Best Causal Discovery Algorithms
Selection of best causal discovery algorithm for any new dataset is a difficult and time consuming process as it requires a researcher to have prior knowledge about existing standard structure learning algorithms. This research proposed a novel meta-learning approach to this problem. Meta-learning refers to learning about learning algorithms where different kinds of meta-data, such as properties of the learning problem, performance measures of different algorithms and previous patterns derived from the data are used to select the best or a combination of learning algorithms to effectively solve a given learning problem. Several Bayesian netwo…
Mehr
CHF 47.90
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
- ISBN: 978-3-659-93510-7
- EAN: 9783659935107
- Produktnummer: 37569520
- Verlag: LAP Lambert Academic Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2016
- Seitenangabe: 64 S.
- Masse: H22.0 cm x B15.0 cm x D0.4 cm 113 g
- Abbildungen: Paperback
- Gewicht: 113
Über den Autor
William Senfuma, MSc: Studied Computer Science at Makerere University. Data Scientist at Tiaxa, Germany.
Bewertungen
Anmelden