Instance Selection and Construction for Data Mining
The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertai…
Mehr
CHF 230.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
V210:
Noch nicht erschienen, Januar 2022
Produktdetails
Weitere Autoren: Motoda, Hiroshi (Hrsg.)
- ISBN: 978-1-4757-3359-4
- EAN: 9781475733594
- Produktnummer: 38247094
- Verlag: Springer US
- Sprache: Englisch
- Erscheinungsjahr: 2013
- Seitenangabe: 416 S.
- Plattform: PDF
- Auflage: 2001
- Reihenbandnummer: 608
5 weitere Werke von Huan Liu (Hrsg.):
Bewertungen
Anmelden