Ajit Singh
Improved Exponential Tree Integer Sorting Algorithm Using Node Growth
Sorting Linear Space Sorting Deterministic Sorting Sorting in O(nloglognlogloglogn) Exponential Tree Integer Sorting
Buch
The traditional integer sorting algorithms give a lower bound of O(n log n) expected time without randomization and O(n) with randomization. Recent researches have optimized lower bound for deterministic sorting algorithms. This thesis will present an idea to achieve the complexity of deterministic integer sorting algorithm in O(n log log n log log log n) expected time and linear space. The idea will use Andersson's exponential tree to perform the sorting with some major modification. Integers will be passed down to exponential tree one at a time but limit the comparison required at each level. The total number of comparison for any integer w…
Mehr
Beschreibung
The traditional integer sorting algorithms give a lower bound of O(n log n) expected time without randomization and O(n) with randomization. Recent researches have optimized lower bound for deterministic sorting algorithms. This thesis will present an idea to achieve the complexity of deterministic integer sorting algorithm in O(n log log n log log log n) expected time and linear space. The idea will use Andersson's exponential tree to perform the sorting with some major modification. Integers will be passed down to exponential tree one at a time but limit the comparison required at each level. The total number of comparison for any integer will be O(log log n log log log n) i.e. total time taken for all integers insertion will be O(n log log n log log log n). The algorithm presented can be compared with the result of Fredman and Willard that sorts n integers in O(n log n / log log n) time in linear space and also with result of Raman that sorts n integers in O(nv(log n log log n)) time in linear space. The algorithm can also be compared with Yijei Han's result of O(n log log n log log log n) expected time for deterministic linear space integer sorting.
CHF 66.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
- ISBN: 978-3-8484-1595-3
- EAN: 9783848415953
- Produktnummer: 37786633
- Verlag: LAP Lambert Academic Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2012
- Seitenangabe: 56 S.
- Masse: H22.0 cm x B15.0 cm x D0.3 cm 102 g
- Abbildungen: Paperback
- Gewicht: 102
Über den Autor
Mr. Ajit Singh was born on 1st November 1987 in Hiasar, Haryana, India. He graduated from Kurukshetra University, Kurukshetra. He holds Master degree in Computer Science from DCSA, Kurukshetra University with distinction. He pursued Master of Engineering in Computer Science & Engineering from Thapar Univerity in 2011. Now he is working at Zscaler.
66 weitere Werke von Ajit Singh:
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.