Harmonic Morphisms Between Riemannian Manifolds
This is the first account in book form of the theory of harmonic morphisms between Riemannian manifolds. Harmonic morphisms are maps which preserve Laplace's equation. They can be characterized as harmonic maps which satisfy an additional first order condition. Examples include harmonic functions, conformal mappings in the plane, and holomorphic functions with values in a Riemann surface. There are connections with many concepts in differential geometry, for example, Killing fields, geodesics, foliations, Clifford systems, twistor spaces, Hermitian structures, iso-parametric mappings, and Einstein metrics and also the Brownain pathpreserving…
Mehr
CHF 223.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
Weitere Autoren: Wood, John C.
- ISBN: 978-0-19-850362-0
- EAN: 9780198503620
- Produktnummer: 22402796
- Verlag: OXFORD UNIV PR
- Sprache: Englisch
- Erscheinungsjahr: 2003
- Seitenangabe: 536 S.
- Masse: H24.2 cm x B16.4 cm x D3.4 cm 875 g
- Auflage: New
- Reihenbandnummer: 29
- Gewicht: 875
3 weitere Werke von Paul Baird:
Bewertungen
Anmelden