Graph Neural Networks: Foundations, Frontiers, and Applications
Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics.…
Mehr
CHF 136.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V104:
Folgt in ca. 10 Arbeitstagen
Produktdetails
Weitere Autoren: Cui, Peng (Hrsg.) / Pei, Jian (Hrsg.) / Zhao, Liang (Hrsg.)
- ISBN: 978-981-1660-53-5
- EAN: 9789811660535
- Produktnummer: 38217810
- Verlag: Springer Nature Singapore
- Sprache: Englisch
- Erscheinungsjahr: 2022
- Seitenangabe: 728 S.
- Masse: H16.5 cm x B24.3 cm x D4.5 cm 1'200 g
- Auflage: 1st ed. 2022
- Abbildungen: HC runder Rücken kaschiert
- Gewicht: 1200
Über den Autor
144293640
Bewertungen
Anmelden