Frank (Hrsg.) Nielsen
Geometric Structures of Statistical Physics, Information Geometry, and Learning
SPIGL'20, Les Houches, France, July 27-31
Buch
Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric…
Mehr
Beschreibung
Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.
CHF 291.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V104:
Folgt in ca. 10 Arbeitstagen
Produktdetails
Weitere Autoren: Barbaresco, Frédéric (Hrsg.)
- ISBN: 978-3-030-77956-6
- EAN: 9783030779566
- Produktnummer: 38306373
- Verlag: Springer International Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2021
- Seitenangabe: 476 S.
- Masse: H24.1 cm x B16.0 cm x D2.9 cm 962 g
- Auflage: 1st ed. 2021
- Abbildungen: HC runder Rücken kaschiert
- Reihenbandnummer: 361
- Gewicht: 962
28 weitere Werke von Frank (Hrsg.) Nielsen:
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 136.00
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 116.00
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 112.00
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 130.00
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 154.50
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 118.00
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 125.00
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 93.50
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 153.50
SPIGL'20, Les Houches, France, July 27-31
Ebook (PDF Format)
CHF 177.00
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.