Friction Stir Processing for Enhanced Low Temperature Formability
A volume in the Friction Stir Welding and Processing Book Series
The use of friction stir processing to locally modify the microstructure to enhanced formability has the potential to alter the manufacturing of structural shapes. There is enough research to put together a short monograph detailing the fundamentals and key findings. One example of conventional manufacturing technique for aluminum alloys involves fusion welding of 5XXX series alloys. This can be replaced by friction stir welding, friction stir processing and forming. A major advantage of this switch is the enhanced properties. However qualification of any new process involves a series of tests to prove that material properties of interest in…
Mehr
CHF 50.25
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
Weitere Autoren: Mishra, Rajiv S.
- ISBN: 978-0-12-420183-5
- EAN: 9780124201835
- Produktnummer: 35980565
- Verlag: Elsevier Science & Techn.
- Sprache: Englisch
- Erscheinungsjahr: 2014
- Seitenangabe: 148 S.
- Plattform: EPUB
Über den Autor
Mr. Smith is a Project Manager at Wolf Robotics in Fort Collins, Colorado, specializing in projects advancing the state of the capability automatic robotic solutions and has been with Wolf Robotics since early 2013. Prior to that, Chris was Co-Founder and Vice President of Engineering of Friction Stir Link, Inc. (FSL) in Brookfield, WI which was founded in 2001. At FSL, Chris led efforts in the commercialization of friction stir welding and the related technologies. Prior to FSL, Chris began his career at A.O. Smith Automotive Products Company, where he was responsible for the development of new robotic processing technologies. Throughout his career, Mr. Smith has lead the development and integration of new automated technologies and has been involved with friction stir welding, arc welding, machining and material handling technologies. He developed the first production capable industrial robotic system for friction stir welding. Chris has managed projects leading to significant advancements in robotic material handling, friction stir welding and its related technologies, as well as robotic machining and drilling. At FSL he managed projects leading to many of North America's first and/or most significant friction stir welding applications. Mr. Smith has a Bachelor of Science Degree from the University of Colorado-Boulder and Master of Science degree from the University of Wisconsin-Madison in Mechanical Engineering. He was awarded the American Welding Society's A.F. Davis Silver Medal Award in 2001. Chris has authored over 30 papers and chapters on FSW in two engineering books and has two patents. Chris also is co-chair of the American Welding Society's C6 Committee on Recommended Practices for Friction Stir Welding.
5 weitere Werke von Christopher B. Smith:
Bewertungen
Anmelden