Contribution to vehicle detection using deep learning
Deep learning is taking place, especially with the rapid growth and availability of large databases and the recent improvements in Graphics Processing Units (GPUs). The main objective of this research is to apply deep learning algorithms, such as Convolutional Neural Networks (CNNs) and deep architectures, in particular the VGG-16 deep model, for the categorization and localization of vehicles in road scenes. In this dissertation, we will show that through optimized parameterization and simple algorithmic modification, we can improve, even relatively, the robustness of a particular Faster R-CNN type network in vehicle detection and achieve be…
Mehr
CHF 52.90
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V105:
Folgt in ca. 15 Arbeitstagen
Produktdetails
- ISBN: 978-620-4-15277-6
- EAN: 9786204152776
- Produktnummer: 37737188
- Verlag: Our Knowledge Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2021
- Seitenangabe: 68 S.
- Masse: H22.0 cm x B15.0 cm x D0.4 cm 119 g
- Abbildungen: Paperback
- Gewicht: 119
Über den Autor
Khaled Bayoudh é estudante de doutoramento na Escola Nacional de Engenharia e está interessado em vários aspectos tais como veículos autónomos, visão por computador e aprendizagem profunda. Antes de iniciar os seus estudos de doutoramento, Khaled obteve o seu mestrado em Sistemas de Transporte Inteligentes na Escola Nacional de Engenharia, Tunísia.
3 weitere Werke von Khaled Bayoudh:
Bewertungen
Anmelden