Conformal Prediction for Reliable Machine Learning
Theory, Adaptations and Applications
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the wo…
Mehr
CHF 117.35
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
Weitere Autoren: Ho, Shen-Shyang (Hrsg.) / Vovk, Vladimir (Hrsg.)
- ISBN: 978-0-12-401715-3
- EAN: 9780124017153
- Produktnummer: 35980112
- Verlag: Elsevier Science & Techn.
- Sprache: Englisch
- Erscheinungsjahr: 2014
- Seitenangabe: 334 S.
- Plattform: EPUB
Bewertungen
Anmelden