Jiuping (Hrsg.) Xu
Big Data and Information Theory
Ebook (PDF Format)
Big Data and Information Theory are a binding force between various areas of knowledge which allow for societal advancement. Rapid development of data analytic and information theory allows companies to store vast amounts of information about production, inventory, service, and consumer activities. More powerful CPUs and cloud computing make it possible to do complex optimization instead of using heuristic algorithms, as well as instant rather than offline decision making. The era of big data challenges includes analysis, capture, curation, search, sharing, storage, transfer, visualization, and privacy violations. Big data calls for better in…
Mehr
Beschreibung
Big Data and Information Theory are a binding force between various areas of knowledge which allow for societal advancement. Rapid development of data analytic and information theory allows companies to store vast amounts of information about production, inventory, service, and consumer activities. More powerful CPUs and cloud computing make it possible to do complex optimization instead of using heuristic algorithms, as well as instant rather than offline decision making. The era of big data challenges includes analysis, capture, curation, search, sharing, storage, transfer, visualization, and privacy violations. Big data calls for better integration of optimization, statistics and data mining. In response to these challenges this book brings together leading researchers and engineers to exchange and share their experiences and research results about big data and information theory applications in various areas. The book covers a broad range of topics including statistics, data mining, data warehouse implementation, engineering management in large scale infrastructure systems, data-driven sustainable supply chain network, information technology service offshoring project issues, online rumors governance, preliminary cost estimation, and information system project selection. The chapters in this book were originally published in the journal, International Journal of Management Science and Engineering Management.
CHF 65.80
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
V215:
Noch nicht erschienen, Juni 2022
Produktdetails
Weitere Autoren: Ahmed, Syed Ejaz (Hrsg.) / Li, Zongmin (Hrsg.)
- ISBN: 978-1-00-059171-2
- EAN: 9781000591712
- Produktnummer: 38070155
- Verlag: Taylor & Francis Ltd.
- Sprache: Englisch
- Erscheinungsjahr: 2022
- Seitenangabe: 130 S.
- Plattform: PDF
- Auflage: 1. Auflage
Über den Autor
Jiuping Xu is Associate Vice President, Dean of Business School and Director of Institute of Emergency Management and Reconstruction in Post-disaster of Sichuan University. He has published more than 700 peer-reviewed journal papers and over 40 books in Springer, Taylor & Francis, Wiley, Elsevier, Cambridge University Press, etc. Syed Ejaz Ahmed is Dean of the Faculty of Mathematics and Science, Brock University, Canada. His research interests concentrate on big data, predictive modeling, data science, and statistical machine learning with applications.Zongmin Li is Deputy Department Head of Management Science and System Science Department of Business School, Sichuan University, P. R. China. Her research interests focus on data-driven decision making, big data analytics.
42 weitere Werke von Jiuping (Hrsg.) Xu:
Ebook (PDF Format)
CHF 330.50
Ebook (PDF Format)
CHF 282.00
Ebook (PDF Format)
CHF 393.50
Ebook (PDF Format)
CHF 419.00
Ebook (PDF Format)
CHF 295.00
Ebook (PDF Format)
CHF 330.50
Ebook (PDF Format)
CHF 271.50
Ebook (PDF Format)
CHF 376.50
Ebook (PDF Format)
CHF 295.00
Ebook (PDF Format)
CHF 295.00
Ebook (PDF Format)
CHF 295.00
Ebook (PDF Format)
CHF 330.50
Ebook (PDF Format)
CHF 530.50
Ebook (PDF Format)
CHF 330.50
Bewertungen
0 von 0 Bewertungen
Anmelden
Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.