Adversary-Aware Learning Techniques and Trends in Cybersecurity
This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of…
Mehr
CHF 179.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V103:
Folgt in ca. 5 Arbeitstagen
Produktdetails
Weitere Autoren: Mittu, Ranjeev (Hrsg.) / Collins, Joseph B. (Hrsg.)
- ISBN: 978-3-030-55694-5
- EAN: 9783030556945
- Produktnummer: 38322222
- Verlag: Springer International Publishing
- Sprache: Englisch
- Erscheinungsjahr: 2022
- Seitenangabe: 240 S.
- Masse: H23.5 cm x B15.5 cm x D1.3 cm 371 g
- Auflage: 1st ed. 2021
- Abbildungen: Paperback
- Gewicht: 371
Über den Autor
145427659
2 weitere Werke von Prithviraj (Hrsg.) Dasgupta:
Bewertungen
Anmelden