Advanced Thermoelectrics
Materials, Contacts, Devices, and Systems
CHF 75.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
V112:
Lieferbar in ca. 10-20 Arbeitstagen
Produktdetails
Weitere Autoren: Lan, Yucheng (Hrsg.) / Zhang, Qinyong (Hrsg.)
- ISBN: 978-0-367-87797-2
- EAN: 9780367877972
- Produktnummer: 33269600
- Verlag: Taylor and Francis
- Sprache: Englisch
- Erscheinungsjahr: 2019
- Seitenangabe: 812 S.
- Masse: H25.4 cm x B17.8 cm
- Abbildungen: Farb., s/w. Abb.
Über den Autor
Prof. Zhifeng Ren, an M. D. Anderson Professor in the Department of Physics and the Texas Center for superconductivity at the University of Houston, has been leading the field of nanostructured thermoelectric materials and devices and other scientific fields. His group published an article in Science in 2008 to establish that ball-milling/hot-pressing method is the way to produce thermoelectric nanocomposites significantly enhanced thermoelectric properties in bismuth-telluride system. The work has pioneered the field of nanostructured thermoelectric materials and has been cited over 1000 times. Following the pioneer work, his lab has successfully enhanced thermoelectric properties in various thermoelectric nanomaterials such as YbAgCu4, PbTe/PbSe, skutterudites, half- Heuslers, SiGe alloys, etc, covering 20 K to 1300 K. These thermoelectric nanomaterials were fabricated into thermoelectric devices to harvest waste heat and convert solar energy (published in the journal Nature Materials in 2011). His group has published more than 300 papers in peer-reviewed journals, including Nature, Science, Physical Review Letters, Journal of the American Chemical Society, Nano Letters, Advanced Materials, Small, Advanced Functional Materials, Advanced Energy Materials, Energy & Environmental Science, ACS Nano, Advances in Physics, Proceedings of the National Academy of Sciences, and so on, and these papers have been cited for over 20,000 times. Various new thermoelectric materials with good thermoelectric properties have been discovered and fabricated in the past a few years, including the most recently discovered MgAgSb-based materials.Prof. Yucheng Lan, an associate professor in Morgan State University and was a research assistant professor in the Department of Physics and the Texas Center for superconductivity at the University of Houston, has worked on microstructures of thermoelectric nanomaterials and devices. He is an author of 90 peer-reviewed papers publ
2 weitere Werke von Zhifeng (Hrsg.) Ren:
Bewertungen
Anmelden